CI-340 Handheld Photosynthesis System

Accurate and Portable—Gas Exchange on the Go!

Compact and durable, this single-handed tool measures photosynthesis, respiration, transpiration, stomatal conductance, PAR and internal CO_2 all in one easy to carry unit. Optional accessory modules enable the researcher to control CO_2 , $\mathrm{H}_2\mathrm{O}$, temperature, light intensity, and measure chlorophyll fluorescence, while the ten different customized chambers accommodate any leaf size, including conifer needles and cacti. Direct chamber connection to the $\mathrm{CO}_2/\mathrm{H}_2\mathrm{O}$ gas analyzer reduces measurement delay and enables rapid measurement of gas exchange.

Control Modules

CI-301LA ■ Light Module

The Light Module allows researchers to adjust the light intensity above the leaf in the chamber to perform light-response curves and standardize light environment across measurements.

CI-301AD

■ Adjustable H₂O & CO₂ Control Module

The H₂O & CO₂ Control Module enables researchers to set or adjust the CO₂ and H₂O concentrations in the incoming air stream in order to investigate leaf-level physiological responses.

CI-510CS

■ Temperature Control Module

The Temperature Control Module allows researchers to adjust the temperature of the leaf chamber to evaluate changes in photosynthetic rate relative to high or low temperatures.

CI-510CF

■ Chlorophyll Flourescence Module

The Chlorophyll Fluorescence Module measures fluorescence simultaneously alongside gas-exchange measurements and provides researchers with information about changes in photosynthesis efficiency and heat dissipation from a leaf.

The control modules expand the use of the CI-340 and enable users to modify light intensity, manipulate CO_2 and H_2O concentrates, adjust temperature, and measure chlorophyll fluoresence.

Leaf Chambers

LC-1

■ Square Leaf Chamber

For open-system measurements of trees, shrubs and herbs with small, broad leaves. 25 mm x 25 mm

LC-5

■ Large Cylindrical Leaf Chamber

For open-system measurements of largeneedled conifers. 50 mm x 70 mm

I C-10

■ Liter Leaf Chamber

For closed-system measurements of very large leaves. 180 mm x 130 mm x 170 mm

I C-11

■ Cactus Leaf Chamber

For measuring the leaves of Cacti with the CI-340 Handheld Photosynthesis System.

Our **10 customized leaf chambers** maximize the amount of leaf area enclosed in the sample chamber. Visit our website to see more.

Applications

- ▶ Ecologists use the CI-340 to measure seasonal changes in photosynthetic rate as a response to temperature shifts.
- Agronomists use the CI-340 to measure water status of crop plants across related genotypes.
- Horticulturalists use the CI-340 to measure changes in leaf physiology as a result of drought stress.

To see a full list of application resources including published research with the CI-340 Handheld Photosynthesis System, please visit: www.cid-inc.com/applications

Via Alberico Albricci 9/11 - 00135 Roma Tel: +39 0636301456 / 06 89871120 Fax: 06 3293698 - Mob: +393299536448 Email: info@lombardemarozzini.com www.lombardemarozzini.com

Product Features

- Lightweight and optimized for single-handed operation
- Stable analyzers for accurate CO₂ and H₂O measurements
- Accommodates open and closed system measurements
- ▶ Infrared, non-contact leaf temperature measurement
- ▶ Ten interchangeable chambers customized for different leaf types
- Custom soil respiration chamber
- Control modules for light, temperature control, CO₂ / H₂O supply and chlorophyll fluorescence measurement
- Chlorophyll fluorescence and photosynthesis measured simultaneously

